[FreeCourseSite.com] Udemy - Complete Data Science & Machine Learning A-Z with Python


File Information

File Size:   10.82 GB
Creat Time:   2024-05-21
Active Degree:   130
Last Active:   2025-05-09
Magnet Link:    Magnet LinkMagnet Link
Statement:   This site does not provide download links, only text displays, and does not contain any infringement.

File List

  1. 42. Competition Section on Kaggle/2. Competitions on Kaggle Lesson 2.mp4 196.28 MB
  2. 42. Competition Section on Kaggle/1. Competitions on Kaggle Lesson 1.mp4 192.69 MB
  3. 44. Code Section on Kaggle/3. Examining the Code Section in Kaggle Lesson 3.mp4 163.73 MB
  4. 43. Dataset Section on Kaggle/1. Datasets on Kaggle.mp4 136.42 MB
  5. 41. First Contact with Kaggle/1. What is Kaggle.mp4 132.78 MB
  6. 48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/6. Recognizing Variables In Dataset.mp4 129.91 MB
  7. 41. First Contact with Kaggle/5. Getting to Know the Kaggle Homepage.mp4 125.88 MB
  8. 1. Installations/1. Installing Anaconda Distribution for Windows.mp4 121.16 MB
  9. 48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/1. First Step to the Hearth Attack Prediction Project.mp4 119.95 MB
  10. 1. Installations/5. Installing Anaconda Distribution for Linux.mp4 117.51 MB
  11. 21. Matplotlib/8. Basic Plots in Matplotlib I.mp4 113.84 MB
  12. 46. Other Most Used Options on Kaggle/2. Ranking Among Users on Kaggle.mp4 109.61 MB
  13. 27. Linear Regression Algorithm in Machine Learning A-Z/3. Linear Regression Algorithm With Python Part 2.mp4 109.50 MB
  14. 44. Code Section on Kaggle/2. Examining the Code Section in Kaggle Lesson 2.mp4 108.35 MB
  15. 48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/3. Notebook Design to be Used in the Project.mp4 107.44 MB
  16. 25. Evaluation Metrics in Machine Learning/2. Machine Learning Model Performance Evaluation Classification Error Metrics.mp4 102.67 MB
  17. 22. Seaborn/5. Basic Plots in Seaborn.mp4 101.21 MB
  18. 25. Evaluation Metrics in Machine Learning/4. Machine Learning With Python.mp4 94.45 MB
  19. 50. Preparation For Exploratory Data Analysis (EDA) in Data Science/4. Examining Statistics of Variables.mp4 93.57 MB
  20. 14. Functions That Can Be Applied on a DataFrame/3. Aggregation Functions in Pandas DataFrames.mp4 92.87 MB
  21. 52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4 92.85 MB
  22. 27. Linear Regression Algorithm in Machine Learning A-Z/5. Linear Regression Algorithm With Python Part 4.mp4 92.15 MB
  23. 14. Functions That Can Be Applied on a DataFrame/5. Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes.mp4 90.23 MB
  24. 51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4 86.08 MB
  25. 47. Details on Kaggle/1. User Page Review on Kaggle.mp4 83.46 MB
  26. 29. Logistic Regression Algorithm in Machine Learning A-Z/3. Logistic Regression Algorithm with Python Part 2.mp4 83.41 MB
  27. 23. Geoplotlib/3. Example - 2.mp4 83.08 MB
  28. 51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/1. Numeric Variables (Analysis with Distplot) Lesson 1.mp4 82.28 MB
  29. 44. Code Section on Kaggle/1. Examining the Code Section in Kaggle Lesson 1.mp4 81.44 MB
  30. 48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/5. Examining the Project Topic.mp4 78.34 MB
  31. 27. Linear Regression Algorithm in Machine Learning A-Z/2. Linear Regression Algorithm With Python Part 1.mp4 78.00 MB
  32. 19. Fundamentals of Python 3/5. Lists, Tuples, Dictionaries and Sets in pyhton.mp4 77.14 MB
  33. 51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4 76.53 MB
  34. 47. Details on Kaggle/2. Treasure in The Kaggle.mp4 76.43 MB
  35. 29. Logistic Regression Algorithm in Machine Learning A-Z/2. Logistic Regression Algorithm with Python Part 1.mp4 73.95 MB
  36. 6. Operations in Numpy Library/2. Arithmetic Operations in Numpy.mp4 73.54 MB
  37. 27. Linear Regression Algorithm in Machine Learning A-Z/4. Linear Regression Algorithm With Python Part 3.mp4 71.96 MB
  38. 21. Matplotlib/4. Figure, Subplot and Axex.mp4 71.56 MB
  39. 52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4 69.72 MB
  40. 11. Structural Operations on Pandas DataFrame/3. Null Values in Pandas Dataframes.mp4 68.57 MB
  41. 16. File Operations in Pandas Library/2. Data Entry with Csv and Txt Files.mp4 65.88 MB
  42. 49. First Organization/3. Initial analysis on the dataset.mp4 65.49 MB
  43. 13. Structural Concatenation Operations in Pandas DataFrame/1. Concatenating Pandas Dataframes Concat Function.mp4 65.37 MB
  44. 49. First Organization/1. Required Python Libraries.mp4 65.08 MB
  45. 21. Matplotlib/5. Figure Customization.mp4 64.81 MB
  46. 20. Object Oriented Programming (OOP)/5. Overriding and Overloading in Object Oriented Programming (OOP).mp4 64.20 MB
  47. 13. Structural Concatenation Operations in Pandas DataFrame/4. Merge Pandas Dataframes Merge() Function Lesson 3.mp4 61.61 MB
  48. 22. Seaborn/7. Regression Plots and Squarify in Seaborn.mp4 61.55 MB
  49. 2. NumPy Library Introduction/2. The Power of NumPy.mp4 61.30 MB
  50. 31. K Nearest Neighbors Algorithm in Machine Learning A-Z/3. K Nearest Neighbors Algorithm with Python Part 2.mp4 60.80 MB